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1.0  Brief Review of the Language Measure 
 

Let the plant behavior be modeled as a DFSA ),,,,( mii QqQG δΣ≡  where Q  is the finite set of 
states with nQ =  excluding the dump state ([RW87] and [KG95(1)]), if any, and Qqi ∈  is the 
initial state;  Σ  is the (finite) alphabet of events; *Σ  is the set of all finite-length strings of events 
including the empty string  ε ; the (total) function of QQ →Σ×:δ  represents state transitions and 

QQ →Σ× *:*δ  is an extension of δ ; and QQm ⊆  is the set of marked states. 
Definition 1: A DFSA iG , initialized at Qqi ∈ , generates language { }QsqsGL ii ∈Σ∈≡ ),(*:*)( δ  
and marked sublanguage { }miim QsqsGL ∈Σ∈≡ ),(*:*)( δ . 

The language )( iGL  is partitioned into the non-marked language )()()( imii
o GLGLGL −≡  and 

the marked language )( im GL , consisting of event strings that, starting from the initial state Qqi ∈ , 
terminate at one of the non-marked states in mQQ −  and one of the marked states in mQ , 
respectively.  The set mQ  of marked states is partitioned into +

mQ  and −
mQ , where +

mQ  contains all 
good marked states that we desire to reach and −

mQ  contains all bad marked states that we want to 
avoid, although it may not always be possible to avoid the bad states while attempting to reach 
the good states.  The marked language )( im GL  can be further partitioned into )( im GL+ and )( im GL−  
consisting of good and bad strings that, starting from the initial state iq , terminate to +

mQ  and −
mQ , 

respectively.   

Now we construct a signed real measure ( )∞∞−≡ℜ→Σ ,2: *µ  for quantitative evaluation of 
every event string *Σ∈s  based on state-based decomposition of )( iGL  into null (i.e., )( i

o GL ), 
positive (i.e., )( im GL+ ), and negative (i.e., )( im GL− ) sublanguages of )( iGL . 

Definition 2:  The language of all strings that start at state Qqi ∈ , and terminate at state Qq j ∈ , is 
denoted  ),( ij qqL . Thus, }),(*:)({),( jiiij qsqGLsqqL =∈≡ δ .  

Definition 3: The characteristic function that assigns a signed real weight to state-partitioned 
sublanguages is defined as: ( ){ } ]1,1[,:,: −→∈QqpqpLχ  such that 

i

m

m

m

j q
Qpif
Qpif
Qpif

q oftindependen
]1,0(

}0{
)0,1[

)(

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈

∉
∈−

∈
+

−

χ

  
Definition 4: The event cost is conditioned on the DFSA state at which the event is generated, 
and is defined as )1,0[*:~ →×Σ Qπ  such that ,Qq j ∈∀ Σ∈∀ kσ , *,Σ∈∀s  

• [ )1,0~][~ ∈≡ jkjk q πσπ ; 1~ <∑k jkπ ; 

• 0][~ =jk qσπ  if ),( kjq σδ  is undefined;  

• 1][~ =jqεπ ;   

• )],([~][~][~
kjjkjk qsqqs σδπσπσπ = . 
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 Now we define the measure of any sublanguage of the ( )iGL  in terms of the signed the 
characteristic function χ  and the non-negative event cost π~ . 

Definition 5: The signed real measure µ  of a singleton string set *2)(),(}{ Σ∈⊆ iij GLqqLs  is: 
 )|(~)(})({ ij qsqs πχµ ≡  ),( ij qqLs ∈∀ .   
The signed real measure of ),( ij qqL  is defined as: 

 ( ) ( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑≡

∈ ),(
}{),(

iqjqLs
ij sqqL µµ  

The signed real measure of a DFSA iG , initialized at the state Qqi ∈ , is defined as: 
 =≡ ))(( ii GLµµ ( ).),(∑ j ij qqLµ  

Definition 6: The state transition cost of the DFSA is defined as a function )1,0[: →×QQπ  such 
that ,, Qqq kj ∈∀  jk

kqjq
jjk qqq πσππ

σδσ
∑ ≡=

=Σ∈ ),(:
)(~)(  and 0=jkπ  if ∅=Σ∈ )},(:{ σδσ jq .  The 

nn×  state transition cost matrix, denoted as Π -matrix, is defined as: 
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Proposition 1: Given a state transition cost matrix nn×ℜ∈Π , the operator ][ Π−I  is invertible and 
the bounded linear operator 0][ 1 ≥Π− −I  where the matrix inequality is implied elementwise. 

Proof:  It follows from Definitions 4 and 6 that: 

θπ −=∑≡Π ∞ 1max j ij
i

 where )1,0(∈θ  

Then, 1][ −Π−I  is invertible and is a bounded linear operator with norm 11 ||][|| −
∞

− ≤Π− θI [NS82, 
p. 431]. 

Using Taylor series expansion, ∑ Π=Π−
∞

=

−

0

1][
k

kI .  Each element of Π  is non-negative, so each 

element of kΠ is also.  Thus, 0][ 1 ≥Π− −I  elementwise. ■ 

 Wang and Ray [WR02] and Ray and Phoha [RP02] have shown that the measure 
))(( ii GLµµ ≡  of the language )( iGL  can be expressed as: ∑ += j ijiji χµπµ  where )( ii qχχ ≡ .  

Equivalently, in vector notation: Χ+Π= µµ  where the measure vector T
n ][ 21 µµµµ L≡ and the 

characteristic vector T
n ][ 21 χχχ L≡Χ .  By Proposition 1, the measure vector µ  is uniquely 

determined as: ΧΠ−= −1][Iµ . 
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2.0  Optimal Control Using the Language Measure 
 

We now present the theoretical foundations of the unconstrained optimal control of discrete 
event systems [SL98].  Let },,,{ 10 NSSS L≡S  be the finite set of all supervisory control policies 
for the open loop plant automaton G  where 0S  is the null controller (i.e., no disabled events), 
i.e. )()/( 0 GLGSL = . Therefore the controller cost matrix plantS Π≡Π=Π 00)(  is the Π -matrix of 
the open loop plant automaton G .  For a supervisor },,2,1{, NiSi L∈ , the control policy 
selectively disables certain controllable events, and therefore the following (elementwise) 
inequality holds: 0)( Π≤Π≡Π kk S  and )()/( GLGSL k ⊆  S∈∀ kS . 

Definition 7: For any supervisor S∈S  and any measure vector nℜ∈ν , the affine operator 
nnST ℜ→ℜ:)(  is defined as:  Χ+Π= νν )()( SST  

Proposition 2: S∈∀S , )(ST  is a contraction operator, and there exists a unique measure vector 
)(Sµ  such that )()()( SSTS µµ = . 

Proof: Since 0)(0 Π≤Π≤ S  elementwise, and 0Π  is a contraction operator, )(SΠ  is also a 
contraction operator.  Since Χ  is a constant vector, )(ST  is also a contraction.  Hence, ∃  a 
unique fixed point )()()( SSTS µµ = .  ■ 

Corollary 1 to Proposition 2:  The fixed point of the contraction operator )( kST  is: 
ΧΠ−= −1][ kk Iµ  where )( kk Sµµ ≡  and )( kk SΠ≡Π . 

Proof: The unique fixed point )( kSµ of )( kST  satisfies the identity Χ+Π= )()()( kkk SSS µµ . As 
)()(0 0SS k Π≤Π≤  elementwise, we have 1||)(||)( 0 <Π≤Π ∞∞

SS k . Hence, the operator 1)]([ −Π− kSI  

is bounded. ■ 

Corollary 2 to Proposition 2:  The operator ][ kI Π−  has a real positive determinant, i.e., 
0][ >Π− kIDet .  

Proof: Eigenvalues of the real matrix kΠ  are located within the unit circle and they appear as 
real or complex conjugates.  Therefore, eigenvalues of ][ kI Π−  have positive real parts.  So, 

][ kIDet Π−  is real positive. ■ 
Proposition 3:  Let k

n

k
j l

Ll
µµ min

},,2,1{∈
= .  If 0≤k

jµ  then 0≤jχ  and if 0<k
jµ , then 0<jχ . 

Proof: The DFSA satisfies the identity j
n

k
j

k
j χµπµ +∑=

∈ },,2,1{ Ll
ll  that leads to the inequality 

jjj
k
j χµπµ +∑≥ )(

l
l ⇒  jjj χµπ ≥∑− l

l
l )1( . The proof follows from  0)1( >∑−

l
ljπ (see Defs. 3, 4).  

 ■ 
Corollary 1 to Proposition 3:  Let k

n

k
j l

Ll
µµ max

},,2,1{∈
= .  If 0≥k

jµ , then 0≥jχ  and if  0>k
jµ , then 

0>jχ .  

Proof:  The proof is similar to that of Proposition 3.  ■ 



 

 4

Proposition 4: Given plantS Π≡Π=Π 00)(  and ΧΠ−≡ −1][ kk Iµ , let 1+Πk be generated from kΠ  for 

0≥k  as follows: },,,2,1{, nji L∈∀  thij element of 1+Πk  is modified as:  
⎪
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⎨
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ij
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ij
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ij

k
ij

π
π
π

π 1
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<
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k
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k
j

k
j
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if
if

µ
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  and  

kk ∀Π≤Π 0 .  Then, kk µµ ≥+1  elementwise and equality holds if and only if  .1 kk Π=Π +  

Proof:  ( ) ΧΠ−−Π−=− −+−++ 11111 ][][ kkkk IIµµ  

 = ( ) ΧΠ−Π−−Π−Π− −+−+ 1111 ][][][][ kkkk IIII  

 = ( ) kkkkI µΠ−ΠΠ− +−+ 111][  
Defining the matrix kkk Π−Π≡∆ +1 , let the thj  column of k∆  be denoted as k

j∆ .  Then, 0≤∆k
j  if 

0<k
jµ  and  0≥∆k

j  if  0>k
jµ , and the remaining columns of k∆  are zero vectors.   This implies: 

0≥∑ ∆=∆ k
j

j

k
j

kk µµ . Since kk ∀Π≤Π 0 , 0][ 11 ≥Π− −+kI  elementwise, we 

have. kkkkkI µµµ ≥⇒≥∆Π− +−+ 111 0][ .  For 0≠k
jµ  and k∆ as defined above, 0=∆ kk µ  if and only 

if 0=∆k .  Then, kk Π=Π +1  and kk µµ =+1 . ■ 

Corollary 1 to Proposition 4:  Let 0<k
jµ .  Let 1+Πk  be generated from kΠ  by disabling 

controllable events that lead to the state jq .  Then, 01 <+k
jµ . 

Proof:  Since only thj  column of ][ 1+Π− kI  differs from that of ][ kI Π−  and the remaining 
columns are the same, the thj  row of the cofactor matrix of ][ 1+Π− kI  is the same as that of the 
cofactor matrix of ][ kI Π− , we have k

j
kk

j
k IDetIDet µµ ][][ 11 Π−=Π− ++ .  By Corollary 2 to 

Proposition 2, both determinants are real positive. ■ 

Remark 1: In Proposition 4, some elements of the thj  column of kΠ  are decreased (or 
increased) by disabling (or re-enabling) controllable events that lead to states jq  for which 

0<k
jµ  (or 0≥k

jµ ). ■ 

Proposition 5:  Iteration of the algorithm in Proposition 4 leads to an optimal cost matrix *Π  that 
maximizes performance vector ΧΠ−≡ −1** ][Iµ  elementwise. 

Proof:  Let there be another cost matrix 0~
Π≤Π  for which ΧΠ−≡ −1]~[~ Iµ .  We will show that 

.*~ µµ ≤   Starting with *]~[]~[*~ *1 µµµ Π−ΠΠ−=− −I , we rearrange the elements of the *µ -vector 
such that T

n ]|[
0

**
1

0

**
1

*
43421

L
43421

L ll

<

+

≥

= µµµµµ  where 0≥kµ  and no controllable event leading to states 

kq  has been disabled; and 0<kµ  for nk ,,2,1 Lll ++=  where all controllable events leading to 
states kq , lL,,2,1=k , have been disabled.  The cost matrices Π

~  and *Π are also rearranged by 
columns in the order in which the *µ -vector is arranged.  
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The algorithm in Proposition 4 keeps elements in the first l  columns of *Π  the same as those 
of the (open loop plant’s) 0Π -matrix and decreases the elements in the last )( l−n columns to the 
maximum permissible extent by disabling all controllable events.  In contrast, the columns of Π

~  
are reduced by an arbitrary choice.  Therefore, the )~( *Π−Π -matrix, whose first l  columns are 
non-positive and last )-( ln  columns are non-negative, yields: 

*1* ])[]~[~ µµµ 0cols -(n last|0 cols  firstI ≥≤Π−=− − ll  where T
n ]|[

0

**
1

0

**
1

*
43421

L
43421

L ll

<

+

≥

= µµµµµ . 

Since 0]~[ 1 ≥Π− −I  elementwise, we conclude that 

0]~[~

0

1
*

0

1
*

0

1* ≤⎟
⎟
⎠

⎞
∑ ⋅+⎜

⎜
⎝

⎛
∑ ⋅Π−=−

≤

+=

≤

=≥

−

44 344 2144 344 21
43421

l

l n

j
jj

j
jj ColColI µµµµ  

Therefore, *~ µµ ≤  for any choice of Π
~ . ■ 

Proposition 6: The control policy induced by the *Π -matrix is unique in the sense that the 
controlled language is most permissive (i.e., least restrictive) among all controller(s) having the 
best performance. 

Proof: Disabling controllable event(s) leading to a state jq  with performance measure 0* =jµ  
does not alter the performance vector *µ .  The optimal control does not disable any controllable 
event leading to a state with zero performance.  Thus, the control policy induced by the *Π -
matrix is most permissive, among all controllers with equal performance *µ .    ■ 

Remark 2: Propositions 5 and 6 suffice to conclude that the *Π -matrix yields the most 
permissive controller with the best performance *µ .  The control policy is realized as follows: 
• All controllable events leading to the states jq  where 0* <jµ  are disabled; 

• All controllable events leading to the states jq  where 0* ≥jµ  are enabled. ■ 
 
3.0  Experimentation 
 
The experimentation for our research was designed to resolve the issue of determining the 
π~ values of a given plant model for a system.  It is important to be able to mathematically or 
experimentally determine these values, as opposed to their being set by hand, because in general 
it is impossible to properly assign by hand probabilities for uncontrollable events (it is possible 
to assign the π~  values for controllable events, since a controller can choose how often they wish 
such events to occur).  For typical MICA scenarios, we used the Boeing Simulator to generate 
the necessary data to determine the π~  values.   
 
The simulation runs generates situations where events occur.  Specifically, we implemented an 
event generator that examined the variables of the system and determined, from those variables 
and the current state of the system according to the plant model, what discrete event is occurring 
in the system.  Since the Boeing simulator is a rich simulation environment, we can use it to 
determine the plant model's π~ values. 
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 Experiment Description 
 
The basis for the experiment is this hypothesis:  Hypothesis: π~  values can be determined 
through event generation and statistical analysis of those events occurring over the course of a 
large number of simulated or actual runs. 
 
The goal of the experiment is to show that the experimental data for these π~  values converges to 
within ε of its actual value with probability δ.  The experimental procedure was as follows: 
 
 1.  Identify the states and events (and thus the transition table) for the system's plant model. 
 
 2.  Implement event generators that take the simulator/experiment data and determine if one 
of  the previously defined events have occurred.  Then update the plant model to the new state 
designated by the event that occurred and the previous state. 
 
 3.  Tally event occurrences in a π~ -like matrix.  That is, an entry in an m * n matrix is 
incremented whenever the corresponding event occurs at the corresponding state. 
 
 4.  Sum the values of a row i and then divide each element in i by that sum.  Scale this 
number by (1-θ) for some pre-determined value of θ.  The resulting matrix contains the π~  
values. 
 
 5.  Repeatedly run experiment to continue adding to the event occurrence matrix.  Over the 
course of numerous experiment runs, the resulting π~ value matrix from these runs should 
converge. 
 
In order to conduct the experiment, we implemented event generators that would determine, at 
each tick, whether or not an event in the set of possible events given the current state had 
occurred.  For example, a event generator for a Damaged event would trigger if the simulator's 
status for a given platform indicated that the platform was damaged.  Each event required an 
event generator.  Once these generators were developed, we could conduct the experiment.   
 
 
       Simulation 
The experiment scenario was that of two fighters and five targets.  Each fighter had the same 
plant model, and each fighter's events were used in the tallying of events in the event occurrence 
matrix.  Targets were randomly placed on the map and fighters emerged from a location 
representing their base on the map (the southeast corner).  See Figure 1. 
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Figure 1.  Sample Experiment Scenario 
 
The fighters would emerge randomly from the base, and upon detection of a target, fly toward it 
to engage, and then decide, based upon uncontrollable events and preset controllable event 
probabilities, what actions to take.  The fighter's processes continued in this manner until they 
were destroyed, all the targets were destroyed, or an upper limit on time for each run was 
reached. 
 
Plant Model 
 
The experiment plant model had these states: 
 
1.   AbortMission – fighter has stopped attempting combat/flight toward combat 
2. AtBase – fighter is at base 
3.   Attack – Fighter has attacked or is attacking target 
4. AttackWithDamaged – fighter is in combat and is attacking (again) with damages to itself  
5. AttackWithLowFuel – fighter is in combat and is attacking (again) with low fuel  
6. DamagedBeforeAttack – fighter is not in combat and has received damage 
7. DamagedDuringAttack – fighter is in combat and has received damage 
8. EnRoute – fighter is flying toward target/waypoint 
9. LowFuelBeforeAttack – fighter is not in combat and is nearing insufficient fuel to return to 

base 
10. LowFuelDuringAttack – fighter is in combat and is nearing insufficient fuel for returning to 

base 
11. MidairRefuel – fighter is attempting to refuel from a tanker 
12. NearTg – Fighter is within range of target 
13. NoWeapons – fighter has no weapons 
14. SelfDestroyed – fighter is destroyed 
15. TargetDestroyed – fighter's current target has been destroyed 
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The following events were recognized by the generators, where U stands for uncontrollable, and 
C for controllable: 
 
a. attack (C) – fighter decides to attack its current target 
b. damaged (U) – fighter is damaged 
c. die (U) – fighter has been destroyed 
d. flee (C) – fighter told to flee to base 
e. lowFuel (U) – fighter near insufficient fuel to return to base, given current position 
f. midairRefuel (C) – fighter decides to refuel from a tanker 
g. nearTg (U) – fighter is near its target 
h. noWeapons (U) – fighter has used all available weapons (includes losing weapons to 

damage, jamming, etc.) 
i. reachBase (U) – fighter reaches base 
j. refuelCompleted (U) – fighter has finished a midair refueling 
k.   replan (U) – fighter has to change its course due to uncontrollable event 
l.    tgDestryd (U) – fighter's target has become destroyed 
 
Transition Table 
The entries of a transition table indicate the events that are possible from each state.  For 
example, from state 1 (atBase), only one event is possible, replan, and that event takes the model 
to state 2 (EnRoute).  Table 1 is the transition table for the plant model. 
 

 
Table 1:  Transition Table for Plant Model 

 
 a b c d e f g h i j k l

1  14 2
2  8
3 3 7 14 1 10 13 8 15
4 4 14 1 13 8 15
5 5 14 1 13 8 15
6  14 1 7 8
7 4 14 1 8
8  6 14 9 12 13 8
9  14 1 11 10 8

10 5 14 1 11 8
11  14 8
12 3 14 13 8 15
13  14 1
14  
15  14 8

 
 

Results 
After several hundred simulation runs, the entries with frequently occurring events began to 
stabilize near a particular value.  For example, the last few π~  values for the transition <Attack, 
attack, Attack> (from the Attack state, choose to attack) are shown just below in Table 2.  The 
resulting π~  matrix, prior to any scaling, is in Table 3 (figures may not sum to 1 due to 
rounding). 



 

 9

 
 
 
 
 
 
 
 
 
 
 

Table 2:  Value Stabilization 
 
Note that some entries are 0, despite their having potential for having a transition occur there, 
according to the transition table.  There are a few possible reasons for this result.  One is that not 
enough runs might have been conducted on the model to get enough situations for those 
transitions to occur.  Another more likely reason, is that the logic of the fighters do not allow the 
fighters to reach those situations, which means that those transitions are a part of a inaccurate 
modeling of the system at hand.  If the fighters, or the plant model, were modified to better 
model the actual situation, such anomalies would be reduced.  Thus this method establishes 
π~ values for the available transitions, and it also points out transitions which may not actually 
have a counterpart in the real scenario, be it from fighters whose logic precludes those situations 
from happening, or otherwise.  The difficulty in creating a plant model for a given system makes 
such capability in this method algorithm a bonus.  After refining the fighter model, plant model, 
and scaling, we have a usable π~ table, on which we can use the language measure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: π~  Matrix 
 
 
 
 

0.439537
0.439553
0.43964 
0.439727
0.439835
0.439878
0.439864
0.439893
0.439879
0.439843

 a b c d e f g h i j k l 
1  .09 .91
2  1
3 .44 .01 .02 .1 .006 .11 .01 .3
4 0 0 0 0 0 0
5 .41 .05 .11 .19 0 .24
6  0 0 .64 .36
7 0 0 .69 .31
8  .003 .003 .1 .83 .02 .04
9  0 .32 .67 .01 0

10 .58 0 .16 .18 .08
11  .27 .73
12 .99 .006 .003 0 0
13  .001 .99
14  
15  0 1



 

 10

Experiment 2:  Robustness of measure and optimality algorithm 
 
The scenario developed for the simulation experiments in this setting deployed a fighter airplane 
against a target that attempts to defend itself by shooting down the fighter.  The experiment was 
conducted using four different but similar plant models and four increasingly aggressive 
controllers [RW87].  A nominal plant model was developed representing a single fighter aircraft 
on a mission to destroy a single defensive target (e.g., an anti-aircraft artillery site), as seen 
previously in prior presentations.  From this plant, 3 other models were created through small 
variations in the π~ values of transitions and X values of the marked states. These variations 
allow the experiment to examine the language measure's validity, and utilize the X vector feature 
of assessing the relative worth of marked states.  The four models of the plant aircraft are 
described below: 
 
Plant model 1:  The nominal plant model, where the values of the π~ matrix were assigned by 
their likelihood of occurrence based on limited available data.  The X values were set to equal 
magnitude weights for the two main outcomes of fighter destruction and target destruction.  
Specifically, X values assigned to these states: aborting the mission (-.05), target destruction (1), 
and fighter destruction (-1.0).  All other states, being unmarked, have a X value of zero. 
 
Plant model 2: Same X values as in Plant model 1, but the π~ values corresponding to the 
controllable events at each state are equal and their sum unchanged.  The remaining π~  values 
are not altered. 
 
Plant model 3: Same π~  values as those in Plant model 1, but different X values to represent the 
preference of preserving the fighter over target destruction.  Specifically, target destruction has a 
X value of .95, while fighter destruction has a X value of -1.  The remaining X values are the 
same as those in Plant model 1. 
 
Plant model 4: Same π~  values as in Plant model 2, and X values as in Plant model 3. 
 
The differences between the values of the various plant models are small, between 0.01 to 0.2.  
The states and events used to represent the fighter-target scenario are similar to the ones from the 
π~ value generation experiment. 
 
Four supervisors were designed from four simple specification sets, which are described below 
in order of increasing aggressiveness: 
 
Specification set 1:  Only attack if there are no problems with the fighter. That is, no damage 
(major or minor), and ample fuel.  Fighter shall not start attacking if there are any problems, and 
if a problem (including running low on fuel) develops during attack, the mission will be aborted.  
Mid-air refueling is not allowed during attack. 
 
Specification set 2:  Attack at least once, but then abort if damaged at all.  Continue to attack 
otherwise.  If the fighter already has damage, it will attack once and then abort.  If the fighter is 
undamaged when attack begins, it shall abort once damage has taken place.  No specifications 
with respect to fuel levels. 
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Specification set 3:  Abort the attack if the fighter has major damage, and attack at most twice 
with minor damage,. Otherwise attack until the target is destroyed or weapons have run out.  (A 
new state is added to handle counting in the case of minor damage incurred.) If the fighter 
already has major damage before attacking, it will abort and not attack.  If the fighter incurs 
major damage while attacking, the mission shall be aborted.  If the fighter has minor damage 
prior to attacking, it will attack at most twice and then abort.  If the fighter incurs minor damage 
during attack, it will attack once more, then abort.  No restrictions based on fuel level. 
 
Specification set 4:  Attack regardless of problems until target is destroyed or all appropriate 
weapons have been used.  Abort if all available weapons have been used. 
 
Supervisors were designed for the open-loop plant models based on the above four specifications 
and were labeled according to their specification set number.   
 
For controllers 1, 2, and 4, supervisor construction and application reduces to simple removal of 
states and transitions from the open-loop plant model.  For controller 3, an additional state was 
added to handle the counting required when considering what the fighter should do when it has 
incurred minor damage. If it is not obvious how to add/delete states and events to/from the open 
plant model when applying a controller, product construction is used and the language measure 
is then applied to that construction. 
 
Results 
 
Language measurements were carried out using each of the four controllers on each of the four 
plants, as well as the unsupervised version of the plants, for a total of 20 measurements.  Table 4 
lists the results of these measurements.  The No Controller row shows the language measure of 
the open plant itself, without a controller being applied to it.  Those figures are the baseline for 
comparison of controllers that are applied to those models.  Controllers that measure less than the 
open plant model's measure are considered to be bad or useless controllers (and thus their 
specifications detrimental):  it would be better to attempt the scenario without those controls 
being applied, for there is a better chance of success according to the measure. 
 

Table 4:  Results of the 20 measurements 
 

 Open Plant Models 
No Control .09898 .1328 .07544 .106 
Controller 1 .0797 .104 .0667 .08972 
Controller 2 .07698 .09547 .06425 .08054 
Controller 3 .10311 .13435 .08422 .1131 
Controller 4 .09424 .1175 .08167 .1034 

 
According to the table, controller 3 was the only controller that managed to improve upon all 
four of the open-loop plant models. As such it consistently was the best control specifications to 
use for the scenario of the four that were proposed.  The consistency is important, because the 
measure's validity depends on being consistent even over small perturbations of plant models 
like the changes that were in this experiment. Furthermore, the order of goodness according to 
the measure was also consistent across the four varieties of plant models: controller 3 was best, 
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followed by 2, 1, and lastly 4.  This observation further establishes the consistency of the 
measure. If the ranking of controllers could be permuted when they differed by non-trivial 
amounts as the result of small perturbations in the plant model, the measure would lose validity. 
 
Controllers 1 and 4 were both bad strategies, they consistently yielded measures worse than that 
of the unrestricted plant, while the performance of controller 2 was mixed; its measures were so 
close to those of the original plant that its measure compared to the original plant was very 
sensitive to the changes of the X vector and Π-matrix.  The all-or-nothing strategies failed to 
rank as highly as the strategies that were middling in their aggressiveness, controller 1 being too 
risk averse and controller 4 allowing for too much risk.  The results of the experiment suggest 
that over the course of repeated runs of this scenario, using the range of parameter perturbation 
in this experiment), controller 3 would yield the highest percentage of successful runs, followed 
by 2, 1 and 4.   
 
Now we compare these results to those of applying optimal control onto all of the previous 
measurements in Table 5. 
 

Table 5:  Results from optimal algorithm 
 

w/ Optimal Open Plant Models 
Open Plant .12298 .16143 .10286 .13618 
Controller 1 .0797 .104 .0667 .08972 
Controller 2 .09289 .11545 .08132 .10219 
Controller 3 .10564 .13573 .08844 .11365 
Controller 4 .09514 .11847 .08257 .10438 

 
As expected, unconstrained optimal control yields the best results.  Controller 1's performance is 
unchanged after optimization, which means that it was already optimal for the set of 
specifications it was covering.  Controller 2's performance has a significant increase, instead of 
being the worst, it is now better than controller 1.   
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4.0   Conclusions 
 
With the process of determining π~  values from the first experiment, we have enabled the 
language measure to be applicable on any system that can be represented as a discrete event 
plant.  The Boeing Simulator was used as a model of the real world, and events can be extracted 
from it, or other simulations, or even the real world, through the process detailed above.  The 
first experiment helps to shape the plant model and also provides accurate π~  values to use with 
that plant model.  Given those results, one can apply the language measure on control 
specifications to determine which specifications are best.  Alternatively one can use the 
optimality algorithm to find the best set of enabled and disabled controllable events under the 
given set of specifications for the controller. 
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